
Chapter One

JAVA BASICS

http://toptechschool.us 1

http://toptechschool.us 2

What is Java?

Java is a popular programming language.

Java is used to develop mobile apps, web apps, desktop apps, games and much more.

Install Java:

Download Java from the official Java web site:

https://www.oracle.com/java/technologies/downloads/#jdk20-windows

To check if you have Java installed on a Windows PC:

C:\Users>java -version

If Java is installed, you will see something like this (depending on version):

java version "11.0.1" 2018-10-16 LTS
Java(TM) SE Runtime Environment 18.9 (build 11.0.1+13-LTS)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.1+13-LTS, mixed mode)

https://www.oracle.com/java/technologies/downloads/

To set up Environment Variables on Windows:

1.Go to "System Properties" (Can be found on Control Panel >
System and Security > System > Advanced System Settings)

2. Click on the "Environment variables" button under the "Advanced"

tab

3.Then, select the "Path" variable in System variables and click

on the "Edit" button

http://toptechschool.us 3

5. At last, open Command Prompt (cmd.exe) and
type java -version to see if Java is running on your
machine

4.Click on the "New" button and add the path where Java

is installed, followed by \bin. By default, Java is installed in

C:\Program Files\Java\jdk-11.0.1 (If nothing else was

specified when you installed it). In that case, You will have

to add a new path with: C:\Program Files\Java\jdk-

11.0.1\bin

Then, click "OK", and save the settings

http://toptechschool.us 4

C:\>echo %JAVA_HOME% C:\>echo %PATH%

What Is An Integrated Development Environment (IDE)?
• Integrated development environments

(IDE) are applications that facilitates the
development of other applications.
Designed to encompass all
programming tasks in one application,
one of the main benefits of an IDE is
that they offer a central interface with
all the tools a developer needs,
including:

• Code editor: Designed for writing and
editing source code, these editors are
distinguished from text editors because
work to either simplify or enhance the
process of writing and editing of code
for developers

• Compiler: Compilers transform source
code that is written in a human
readable/writable language in a form
that computers can execute.

• Debugger: Debuggers are used during
testing and can help developers debug
their application programs.

• Build automation tools: These can help
automate developer tasks that are more
common to save time.

Common Types of IDE used in Software Development:

Eclipse
Eclipse is a Java IDE that is one of the 3 biggest and most
popular IDE’s in the world

IntelliJ IDEA
IntelliJ IDEA is a Java IDE that is one of the 3 biggest and most
popular IDE’s in the world

NetBeans
NetBeans is a Java IDE that is one of the 3 biggest and most
popular IDE’s in the world

http://toptechschool.us 5

https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.jetbrains.com/idea/
https://netbeans.org/

JAVA was developed by James Gosling at Sun Microsystems Inc in the year 1995, later
acquired by Oracle Corporation. It is a simple programming language

• Java is a class-based, object-oriented programming language

• A general-purpose programming language made for developers to write once run
anywhere that is compiled Java code can run on all platforms that support Java.

• Java applications are compiled to byte code that can run on any Java Virtual
Machine.

Java Terminology

Java Virtual Machine(JVM): This is generally referred to as JVM. There are three
execution phases of a program. They are written, compile and run the program.

1. Writing a program is done by a java programmer like you and me.

2. The compilation is done by the JAVAC compiler which is a primary Java compiler
included in the Java development kit (JDK). It takes the Java program as input and
generates bytecode as output.

3. In the Running phase of a program, JVM executes the bytecode generated by the
compiler.

Every Operating System has a different JVM but the output they produce after the
execution of bytecode is the same across all the operating systems. This is why Java is
known as a platform-independent language.

• Bytecode in the Development process: As discussed, the Javac compiler of JDK
compiles the java source code into bytecode so that it can be executed by JVM. It is
saved as .class file by the compiler.

• Java Development Kit(JDK): While we were using the term JDK when we learn
about bytecode and JVM. So, as the name suggests, it is a complete Java
development kit that includes everything including compiler, Java Runtime
Environment (JRE), java debuggers, java docs, etc. For the program to execute in
java, we need to install JDK on our computer in order to create, compile and run the
java program.

http://toptechschool.us 6

https://www.geeksforgeeks.org/java/
https://www.geeksforgeeks.org/jvm-works-jvm-architecture/:~:text=JVM(Java%20Virtual%20Machine)%20acts,(Write%20Once%20Run%20Anywhere).

Working with Java Programing Language

o Open your Eclipse IDE

o Create a project

o Then create a package inside your project

o Then create a class or classes inside your package

o Then Create method inside your class

o And then start Coding ☺!

•In Java, every application begins with a class name, and that class must match
the filename.

•Let's create our first Java file, called Basics.java,

•public class Basics {

• public static void main(String[] args) {

• System.out.println("Hello World");

• }

•}

•Every line of code that runs in Java
must be inside a class. In our
example, we named the
class Basics.

•A class should always start with an
uppercase first letter.

•Note: Java is case-sensitive:
"MyClass" and "myclass" has
different meaning.

•The name of the java file must
match the class name. When saving
the file, save it using the class name
and add ".java" to the end of the
filename.

http://toptechschool.us 7

Package , Class & Methods/Functions in Java

h
ttp

://to
p

tech
sch

o
o

l.u
s

⮚ A package in Java is used to group related classes. Think of it as a folder in a file directory. We use packages to avoid name
conflicts, and to write a better maintainable code. Packages are divided into two categories:

• Built-in Packages (packages from the Java API)

• User-defined Packages (create your own packages)

⮚ A class in Java is a logical template to create objects that share common properties and methods.

⮚ A method is a block of code which only runs when it is called.

You can pass data, known as parameters, into a method.

Methods are used to perform certain actions, and they are also known as functions.

Why use methods?

To reuse code: define the code once, and use it many times.

8

The main Method

The main() method is required and you will see it in every Java program:

public static void main(String[] args)

Any code inside the main() method will be executed. Don't worry about the keywords before and after main. You will get to
know them bit by bit while proceeding with further sessions.

For now, just remember that every Java program has a class name which must match the filename, and that every
program must contain the main() method.

System.out.println()

•Inside the main() method, we can use the println() method to print a line of text to the screen:

public static void main(String[] args) {

System.out.println("Hello World");

}

•Note: The curly braces {} marks the beginning and the end of a block of code.

http://toptechschool.us 9

Java Output

•You learned from the previous chapter that you
can use the println() method to output values or
print text in Java:

Example

•System.out.println("Hello World!");

•You can add as many println() methods as you
want. Note that it will add a new line for each
method:

Example

•System.out.println("Hello World!");

•System.out.println("I am learning Java.");

•System.out.println("It is awesome!");

•

•You can also output numbers, and perform mathematical calculations:

Example

•System.out.println(3 + 3);

•Note that we don't use double quotes ("") inside println() to output numbers.

•The Print() Method

•There is also a print() method, which is similar to println().

•The only difference is that it does not insert a new line at the end of the output:

Example

•System.out.print("Hello World! ");

•System.out.print("I will print on the same line.");

•we will only use println() as it makes it easier to read the output of code.

http://toptechschool.us 10

Multi-line comments start with /* and ends with */.

Any text between /* and */ will be ignored by Java.

This example uses a multi-line comment (a comment block) to explain the code:

Example

•/* The code below will print the words Hello World

•to the screen, and it is amazing */

•System.out.println("Hello World");

Single or multi-line comments?

•It is up to you which you want to use. Normally, we use // for short comments,
and /* */ for longer.

CTRL + SHIFT + F = code alignment

CTRL + / = single comment (first select lines then use this
shortcut and used for UNDO as well)

CTRL + SHIFT + / = multiple lines and use CTRL+Z = to unde it

Java Comments

Comments can be used to explain Java code, and to make
it more readable. It can also be used to prevent execution
when testing alternative code.

Single-line Comments

Single-line comments start with two forward slashes (//).

Any text between // and the end of the line is ignored by
Java (will not be executed).

This example uses a single-line comment before a line of
code:

Example

// This is a comment

System.out.println("Hello World");

System.out.println("Hello World"); // This is a comment

http://toptechschool.us 11

Variables:

Variables are containers for storing data values.

In Java, there are different types of variables, for example:

• String - stores text, such as "Hello". String values are surrounded by double quotes

• int - stores integers (whole numbers), without decimals, such as 123 or -123

• float - stores floating point numbers, with decimals, such as 19.99 or -19.99

• char - stores single characters, such as 'a' or 'B'. Char values are surrounded by single quotes

• boolean - stores values with two states: true or false

Declaring (Creating) an Initializing Variables

Declare a variable

Int age ;

Initialize a variable :
Int age = 25; or we can say age = 25;

Syntax

type variableName ;

VariableName = value;

Where type is one of Java's types (such as int or String), and variableName is the name of the variable (such as x or name).

The equal sign is used to assign values to the variable.
http://toptechschool.us 12

To create a variable that should store text, look at the following example:

Example

Create a variable called name of type String and assign it the value "John":

String name = "John";

System.out.println(name);

To create a variable that should store a number, look at the following example:

Example

Create a variable called myNum of type int and assign it the value 15:

int myNum = 15; System.out.println(myNum);

You can also declare a variable without assigning the value, and assign the value later:

Example

int myNum;

myNum = 15;

System.out.println(myNum);

Note that if you assign a new value to an existing variable, it will overwrite the previous value:

Example

Change the value of myNum from 15 to 20:

int myNum = 15;

myNum = 20;

// myNum is now 20System.out.println(myNum);

Final Variables

If you don't want others (or yourself) to overwrite existing values, use

the final keyword (this will declare the variable as "final" or "constant", which

means unchangeable and read-only):

Example

final int myNum = 15;

myNum = 20; // will generate an error: cannot assign a value to a final

variable

http://toptechschool.us 13

Other Types

A demonstration of how to declare variables of other types:

Example

int myNum = 5;

float myFloatNum = 5.99f;

char myLetter = 'D’;

boolean myBool = true;

String myText = "Hello";

The println() method is often used to display variables.

To combine both text and a variable, use the + character:

Example

String name = "John";

System.out.println("Hello " + name);

You can also use the + character to add a variable to another
variable:

Example

String firstName = "John ";

String lastName = "Doe";

String fullName = firstName + lastName;

System.out.println(fullName);

For numeric values, the + character works as a

mathematical operator (notice that we use int (integer)
variables here):

Example

int x = 5;

int y = 6;

System.out.println(x + y); // Print the value of x + y

http://toptechschool.us 14

https://www.w3schools.com/java/java_operators.asp

Declare Many Variables

To declare more than one variable of the same type, you can use a comma-separated list:

Example

Instead of writing:

int x = 5;

int y = 6;

int z = 50;

System.out.println(x + y + z);

You can simply write:

int x = 5, y = 6, z = 50;

System.out.println(x + y + z);

One Value to Multiple Variables

You can also assign the same value to multiple variables in one line:

Example

int x, y, z ;

x = y = z = 50;

System.out.println(x + y + z);

http://toptechschool.us 15

Declare Many Variables

Java Identifiers

All Java variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age, sum, total Volume).

Note: It is recommended to use descriptive names in order to create understandable and maintainable code:

Example

// Good

int minutesPerHour = 60; // it is good and descriptive.

int m = 60; // it is right but not descriptive

The general rules for naming variables are:

•Names can contain letters, digits, underscores, and dollar signs

•Names must begin with a letter

•Names should start with a lowercase letter and it cannot contain whitespace

•Names can also begin with $ and _ (but we will not use it in this tutorial)

•Names are case sensitive ("myVar" and "myvar" are different variables)

•Reserved words (like Java keywords, such as int or boolean) cannot be used as names

http://toptechschool.us 16

Java Identifiers

Java Data Types
As explained in the previous chapter, a variable in Java must be a specified
data type:

Example

int myNum = 5; // Integer (whole number)

float myFloatNum = 5.99f; // Floating point number

char myLetter = 'D'; // Character

boolean myBool = true; // Boolean

String myText = "Hello"; // String

Data types are divided into two groups:

∙ Primitive data types -

includes byte, short, int, long, float, double, boolean and char

∙ Non-primitive data types - such as String, Arrays and Classes (you

will learn more about these in a later chapter)

Primitive Data Types

A primitive data type specifies the size and type of variable values, and it

has no additional methods.

There are eight primitive data types in Java:

http://toptechschool.us 17

https://www.w3schools.com/java/java_variables.asp
https://www.w3schools.com/java/java_strings.asp
https://www.w3schools.com/java/java_arrays.asp
https://www.w3schools.com/java/java_classes.asp

Example
Byte:
The byte data type can store whole numbers from -128 to 127. This can be used

byte myNum = 100;
System.out.println(myNum);

Short

The short data type can store whole numbers from -32768 to 32767:

Example
short myNum = 5000;

System.out.println(myNum);

Int

The int data type can store whole numbers from -2147483648 to 2147483647. In general, and in our tutorial,

the int data type is the preferred data type when we create variables with a numeric value.

Example

int myNum = 100000;

System.out.println(myNum);

Long

The long data type can store whole numbers from -9223372036854775808 to 9223372036854775807. This is used when int is not large enough to store the value.
Note that you should end the value with an "L":

Example

long myNum = 15000000000L;

System.out.println(myNum);

http://toptechschool.us 18

Floating Point Types

•You should use a floating point type whenever you need a number with a decimal, such as 9.99 or 3.14515.

•The float and double data types can store fractional numbers. Note that you should end the value with an "f" for floats and "d" for doubles:

Float Example

•float myNum = 5.75f;

•System.out.println(myNum);

Double Example

double myNum = 19.99d;

System.out.println(myNum);

Use float or double?
The precision of a floating point value indicates how many digits the value can have after the decimal point. The precision of float is only six or
seven decimal digits, while double variables have a precision of about 15 digits. Therefore it is safer to use double for most calculations.
Scientific Numbers

A floating point number can also be a scientific number with an "e" to indicate the power of 10:

Example

float f1 = 35e3f;double d1 = 12E4d;System.out.println(f1);System.out.println(d1);

http://toptechschool.us 19

h
ttp

://to
p

tech
sch

o
o

l.u
s

Java Boolean Types

•A boolean data type is declared with the boolean keyword and
can only take the values true or false:

Example

•boolean isJavaFun = true;

•boolean isFishTasty = false;

•System.out.println(isJavaFun); // Outputs true

•System.out.println(isFishTasty); // Outputs false

•Boolean values are mostly used for conditional testing, which
you will learn more about in a later chapter.

20

Characters

•The char data type is used to store a single character. The character must be
surrounded by single quotes, like 'A' or 'c':

Example

•char myGrade = 'B';

•System.out.println(myGrade);

•Alternatively, if you are familiar with ASCII values, you can use those to display certain
characters:

Example

•char myVar1 = 65, myVar2 = 66, myVar3 = 67;

•System.out.println(myVar1);

•System.out.println(myVar2);

•System.out.println(myVar3);

http://toptechschool.us 21

Characters

The main difference between primitive and non-primitive data types are:

• Primitive types are predefined (already defined) in Java. Non-primitive types are
created by the programmer and is not defined by Java (except for String).

• Non-primitive types can be used to call methods to perform certain operations,
while primitive types cannot.

• A primitive type has always a value, while non-primitive types can be null as too.

• A primitive type starts with a lowercase letter, while non-primitive types starts with
an uppercase letter.

• The size of a primitive type depends on the data type, while non-primitive types
have all the same size.

Examples of non-primitive types are Strings, Arrays, Classes, Interface, etc. You will
learn more about these in a later chapter.

http://toptechschool.us 22

Strings

The String data type is used to store a sequence of characters (text).
String values must be surrounded by double quotes:

Example

String greeting = "Hello World";
System.out.println(greeting);

A String in Java is actually a non-primitive data type, because it refers to an
object.

The String object has methods that are used to perform certain operations
on strings.

Don't worry if you don't understand the term "object" just yet. We will
learn more about strings and objects in a later chapter.

Java Non-Primitive Data Types or Reference Types

Non-primitive data types are called reference types because they
refer to objects.

https://www.w3schools.com/java/java_strings.asp
https://www.w3schools.com/java/java_arrays.asp
https://www.w3schools.com/java/java_classes.asp
https://www.w3schools.com/java/java_interface.asp

Java Strings

Strings are used for storing text.A String variable contains a collection of characters surrounded by double quotes:
Example
Create a variable of type String and assign it a value:

String greeting = "Hello";

String Length
A String in Java is actually an object, which contain methods that can perform certain operations on strings.
For example, the length of a string can be found with the length() method:
Example
String txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
System.out.println("The length of the txt string is: " + txt.length());

There are many string methods available, for example toUpperCase() and toLowerCase():

String txt = "Hello World";System.out.println(txt.toUpperCase());// Outputs "HELLO WORLD”

System.out.println(txt.toLowerCase()); // Outputs "hello world" (Note: we’ll study more about String methods later)

(Note: we’ll study more about String methods later)

http://toptechschool.us 23

String Concatenation

The + operator can be used between strings to combine them. This
is called concatenation:

Example

String firstName = "John";

String lastName = "Doe";

System.out.println(firstName + " " + lastName);

Note that we have added an empty text (" ") to create a space
between firstName and lastName on print.

You can also use the concat() method to concatenate two
strings:

Example

String firstName = "John ";

String lastName = "Doe";

System.out.println(firstName.concat(lastName));

Adding Numbers and Strings

WARNING!

Java uses the + operator for both addition and concatenation.

Numbers are added. Strings are concatenated.

If you add two numbers, the result will be a number:

Example

int x = 10;

int y = 20;

int z = x + y; // z will be 30 (an integer/number)

If you add two strings, the result will be a string concatenation:

Example

String x = "10"; String y = "20";String z = x + y; // z will be 1020

(a String)

If you add a number and a string, the result will be a string

concatenation:

Example

String x = "10"; int y = 20; String z = x + y; // z will be 1020 (a

String)

http://toptechschool.us 24

Special Characters

Because strings must be written within quotes, Java will misunderstand this string, and generate an error:
String txt = "We are the so-called "Vikings" from the north.";

The solution to avoid this problem, is to use the backslash escape character.

The backslash (\) escape character turns special characters into string characters:

The sequence \" inserts a double quote in a string:

Example

String txt = "We are the so-called \"Vikings\" from the north.";

The sequence \' inserts a single quote in a string:

Example

String txt = "It\'s alright.";

The sequence \\ inserts a single backslash in a string:

Example

String txt = "The character \\ is called backslash.";

http://toptechschool.us 25

Java Type Casting

Type casting is when you assign a value of one primitive data type to another type.

In Java, there are two types of casting:

• Widening Casting (automatically) - converting a smaller type to a larger type size

byte -> short -> char -> int -> long -> float -> double

// create int type variable

int num = 10;

System.out.println("The integer value: " + num);

// convert into double type

double data = num;

System.out.println("The double value: " + data);

• Narrowing Casting (manually) - converting a larger type to a smaller size type

double -> float -> long -> int -> char -> short -> byte

Widening Casting

Widening casting is done automatically when passing a smaller size type to a larger size type:

Example

int myInt = 9;

double myDouble = myInt; // Automatic casting: int to double

System.out.println(myInt); // Outputs 9

System.out.println(myDouble); // Outputs 9.0

Narrowing Casting

Narrowing casting must be done manually by placing the

type in parentheses in front of the value:

Example

double myDouble = 9.78d;

int myInt = (int) myDouble; // Manual casting: double to int

System.out.println(myDouble); // Outputs 9.78

System.out.println(myInt); // Outputs 9

http://toptechschool.us 26

Java Math
The Java Math class has many methods that allows you to perform mathematical tasks on numbers.

Math.max(x,y)

The Math.max(x,y) method can be used to find the highest value of x and y:

Example

Math.max(5, 10);

Math.min(x,y)

The Math.min(x,y) method can be used to find the lowest value

of x and y:

Example

Math.min(5, 10);

Math.sqrt(x)

The Math.sqrt(x) method returns the square root of x:

Example

Math.sqrt(64);

Math.abs(x)

The Math.abs(x) method returns the absolute (positive) value of x:

http://toptechschool.us 27

Examples:

int max =Math.max(40, 90);

int min = Math.min(30, 50);

System.out.println(max);

System.out.println(min);

Java Booleans

•Very often, in programming, you will need a data type that can only

have one of two values, like:

∙ YES / NO

∙ ON / OFF

∙ TRUE / FALSE

•For this, Java has a boolean data type, which can take the

values true or false.

•Boolean Values

•A boolean type is declared with the boolean keyword and can only

take the values true or false:

Example

•boolean isJavaFun = true;

•boolean isFishTasty = false;

•System.out.println(isJavaFun); // Outputs true

•System.out.println(isFishTasty); // Outputs false

However, it is more common to return boolean values
from boolean expressions, for conditional testing (see
below).

http://toptechschool.us 28

Boolean Expression

A Boolean expression is a Java expression that returns a Boolean value: true or false.

You can use a comparison operator, such as the greater than (>) operator to find out if an expression (or a variable) is true:

Example

int x = 10; int y = 9; System.out.println(x > y); // returns true, because 10 is higher than 9

Or even easier:

Example

System.out.println(10 > 9); // returns true, because 10 is higher than 9

In the examples below, we use the equal to (==) operator to evaluate an expression:

Example

int x = 10;System.out.println(x == 10); // returns true, because the value of x is equal to 10

Example

System.out.println(10 == 15); // returns false, because 10 is not equal to 15

The Boolean value of an expression is the basis for all Java comparisons and conditions.

You will learn more about conditions in the next chapter.

http://toptechschool.us 29

h
ttp

://to
p

tech
sch

o
o

l.u
s

Java Operators

Operators are used to perform operations on variables
and values.

In the example below, we use the + operator to add
together two values:

Example

int x = 100 + 50;

Although the + operator is often used to add together two
values, like in the example above, it can also be used to
add together a variable and a value, or a variable and
another variable:

Example

int sum1 = 100 + 50; // 150 (100 + 50)

int sum2 = sum1 + 250; // 400 (150 + 250)

int sum3 = sum2 + sum2; // 800 (400 + 400)

30

Java divides the operators into the following groups:

•Arithmetic operators

•Assignment operators

•Comparison operators

•Logical operators

•Bitwise operators

	Slide 1
	Slide 2
	Slide 3: To set up Environment Variables on Windows:
	Slide 4
	Slide 5: What Is An Integrated Development Environment (IDE)?
	Slide 6
	Slide 7: Working with Java Programing Language
	Slide 8: Package , Class & Methods/Functions in Java
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

